منابع مشابه
Nowhere-Zero 3-Flows in Signed Graphs
Tutte observed that every nowhere-zero k-flow on a plane graph gives rise to a kvertex-coloring of its dual, and vice versa. Thus nowhere-zero integer flow and graph coloring can be viewed as dual concepts. Jaeger further shows that if a graph G has a face-k-colorable 2-cell embedding in some orientable surface, then it has a nowhere-zero k-flow. However, if the surface is nonorientable, then a...
متن کاملNowhere-zero 5-flows
We prove that every cyclically 6-edge-connected cubic graph with oddness at most 4 has a nowhere-zero 5-flow. Therefore, a possible minimum counterexample to the 5-flow conjecture has oddness at least 6.
متن کاملNowhere-zero 3-flows and modulo k-orientations
Article history: Received 30 October 2011 Available online 20 August 2013
متن کاملTitle Nowhere - Zero 3 - Flows in Signed Graphs
Tutte observed that every nowhere-zero k-flow on a plane graph gives rise to a kvertex-coloring of its dual, and vice versa. Thus nowhere-zero integer flow and graph coloring can be viewed as dual concepts. Jaeger further shows that if a graph G has a face-k-colorable 2-cell embedding in some orientable surface, then it has a nowhere-zero k-flow. However, if the surface is nonorientable, then a...
متن کاملNowhere-Zero 3-Flows in Squares of Graphs
It was conjectured by Tutte that every 4-edge-connected graph admits a nowherezero 3-flow. In this paper, we give a complete characterization of graphs whose squares admit nowhere-zero 3-flows and thus confirm Tutte’s 3-flow conjecture for the family of squares of graphs.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2011
ISSN: 0012-365X
DOI: 10.1016/j.disc.2011.02.023